Frederick Chester

Frederick Chester

Professor and David Bullock Harris Chair in Geology

Co-Manager, John W. Handin Laboratory for Experimental Rock Deformation

Earthquake physics, Experimental rock deformation, Structural geology, Tectonophysics

  (979) 845-3296

  Halbouty 53


My research focuses on fracture, faulting and friction in rock, physics of the earthquake source, creep and consolidation in porous granular materials, and semibrittle flow. I enjoy field work in structural geology, laboratory work in experimental rock deformation, and the design and fabrication of high-pressure rock deformation instruments.

Selected Publications

  • Barbery, M. R., F. M. Chester, and J. S. Chester (2021), Characterizing the distribution of temperature and normal stress on flash heated granite surfaces at seismic slip rates. Journal of Geophysical Research: Solid Earth, 126, e2020JB021353. https://doi. org/10.1029/2020JB021353.

  • Ding*, J., F. M. Chester, and J. S. Chester (2021), Test of effective stress for semibrittle deformation using isostatic and triaxial load paths, Journal of Geophysical Research: Solid Earth, 126, e2020JB021326.

  • Ding, J., F. M. Chester, J. S. Chester, X. Shen, and C. Arson (2021), Coupled brittle and viscous micromechanisms produce semibrittle flow, grain-boundary sliding, and anelasticity in salt-rock, Journal of Geophysical Research: Solid Earth,
  • Shen, X., J. Ding, I. Lordkipanidze, C. Arson, J. S. Chester, F. M. Chester (2021), Fabric evolution and crack propagation in salt during consolidation and cyclic compression tests, Acta Geotech.
  • Brodsky, E. E., J. J. Mori, L. Anderson, F. M. Chester, M. Conin, et al. (2020), The State of stress on the fault before, during, and after a major earthquake, Annual Review of Earth and Planetary Sciences, 48, 10.1146/annurev-earth-053018-060507.
  • Chester, F. M., and J. C. Moore (2018) Tectonostratigraphy and processes of frontal accretion with horst-graben subduction at the Japan Trench, in Byrne, T., et al., eds., Geology and Tectonics of Subduction Zones: A Tribute to Gaku Kimura: Geological Society of America Special Paper 534, p. 101–113,
  • Choens, R. C., and F. M. Chester (2018) Time-dependent consolidation in porous geomaterials at in situ conditions of temperature and pressure. Journal of Geophysical Research: Solid Earth, 123.
  • Brodsky, E. E., D. Saffer, P. Fulton, F. Chester, M. Conin, K. Huffman, J. C. Moore, and H.-Y. Wu (2017), The postearthquake stress state on the Tohoku megathrust as constrained by reanalysis of the JFAST breakout data, Geophys. Res. Lett., 44, doi:10.1002/2017GL074027.
  • Luetkemeyer, P., D. L. Kirschner, K. W. Huntington, J. S. Chester, F. M. Chester, J. P. Evans (2016) Constraints on paleofluid sources using the clumped-isotope thermometry of veins from the SAFOD (San Andreas Fault Observatory at Depth) borehole, Tectonophysics,
  • French, M. E., F. M. Chester, J. S. Chester, and J. E. Wilson (2016), Stress-dependent transport properties of fractured arkosic sandstone, Geofluids, DOI: 10.1111/gfl.12174.
  • Saber, O., F. M. Chester, and J. L. Alvarado (2016), Development of a material-testing machine for study of friction: experimental analysis of machine dynamics and friction of rock, Experimental Mechanics, 56, 813-831, DOI: 10.1007/s11340-015-0125-y.
  • French, M. E., F. M. Chester, and J. S. Chester (2015), Micromechanisms of creep in clay-rich gouge from the Central Deforming Zone of the San Andreas fault, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2014JB011496
  • Chester, F.M., Rowe, C., Ujiie, K., Kirkpatrick, J., and C. Regalla, et al. (2013), Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-oki Earthquake. Science, 342(6163):1208–1211. doi:10.1126/science.1243719.
  • Kitajima, H., F.M. Chester, and G. Biscontin (2012), Mechanical and hydraulic properties of Nankai accretionary prism sediments: effect of stress path, Geochemistry, Geophysics, Geosystems (G3), doi:10.1029/2012GC004124.
  • Kitajima, H., J.S. Chester, F.M. Chester, and T. Shimamoto (2010), High-speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution, J. Geophys. Res., 115, B08408, doi:10.1029/2009JB007038.
  • Karner, S.L., A.K. Kronenberg, F.M. Chester, J.S. Chester, and A. Hajash, Jr. (2008), Hydrothermal deformation of granular quartz sand, J. Geophys. Res., 113, B05404, doi:10.1029/2006JB004710.
  • Chester, F.M., Chester, J.S., Kronenberg, A.K., and Hajash, A., Subcritical creep compaction of quartz sand at diagenetic conditions: Effects of water and grain size, J. Geophys. Res., 112, B06203, doi:10.1029/2006JB004317, 2007.
  • Chester, J.S., Chester, F.M., and Kronenberg, A.K., Fracture surface energy of the Punchbowl fault, San Andreas system, Nature, 437, 133-136, 2005.
  • Ramsey, J.M., and Chester, F.M., Hybrid fracture and the transition from extension fracture to shear fracture, Nature, 428, 63-66, 2004.
  • Chester, F.M., and J.S. Chester, Ultracataclasite structure and friction processes of the San Andreas fault, Tectonophysics, 295, 199-221, 1998.
  • Chester, F.M., J.P. Evans, and R.L. Biegel, Internal Structure and Weakening Mechanisms of the San Andreas Fault, J. Geophys. Res., 98, 771-786, 1993.
  • Chester, F.M., The brittle-ductile transition in a deformation-mechanism map for halite, Tectonophysics, 154, 125-136, 1988.
  • Chester, F. M., and J. M. Logan, Composite planar fabric of gouge from the Punchbowl fault, California, J. Struct. Geol., 9, 621-634, 1987.
  • Chester, F. M., and J. M. Logan, Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California, Pure Appl. Geophys., 124, 79-106, 1986.


Ph.D. Geophysics, Texas A&M University, 1988

M.S. Geology, Texas A&M University, 1983

B.A. Geology/Geophysics, University of California, Santa Barbara, 1980

Update My Profile