GEOL 621: Contaminant Hydrogeology

Syllabus, Spring 2014

Instructor:
Dr. Hongbin Zhan, Professor and Holder of Endowed Ray C. Fish Professorship in Geology
Halbouty 259, 862-7961, email: zhan@geos.tamu.edu
website: http://geoweb.tamu.edu/zhan/ZhanTeach.html/
mobile phone: (979) 574-4819.

Class Notes and Text:
Class notes are the primary study materials. If you can understand the class notes thoroughly, you can succeed in this class.

Pre-requisite:
GEOL 410: Hydrogeology or permission from the instructor

Lecture:
TR 5:15-6:30 p.m. Halbouty 174.

Office Hours:
Wednesday 3:00-5:00PM

Course Grading:
There are only one exam (Final) and a series of assignments. The final exam is comprehensive.
• homework: 50% ;
• final exam (date to be announced): 50%

Numerical grades on homework assignments and final exam will be rounded at the first decimal place (e.g. 89.50%→90%, 89.49%→89%). Letter grades for individual assignments will be computed as follows: A=90-100%, B=80-89%, C=70-79%, D=60-69%, F<60%. No extra credit will be available.

A student with an official medical, religious, and university excused absence will not be counted as absent. Students should consult Student Rule 7 for attendance and excused absence.

Learning Outcomes and Course Outline:
1. Introduction to Contaminant Hydrology, Environmental Law, and Challenges
   • Classification of groundwater contamination (organic, inorganic)
   • Emerging groundwater contamination problems
   • Environmental laws that are related to contaminant hydrology

2. Fundamentals of Contaminant and Mass Transport
   • Role of advection in mass transport
   • Capture zone design, capture size, and capture time computation
   • Role of dispersion and diffusion
GEOL 621: Contaminant Hydrogeology

- Role of adsorption, radioactive decay, and biodegradation, and other reaction

3. Analytical Solutions of Advection-Dispersion Equation
   - 1-D solutions with first, second, and third-type boundary conditions
   - 2-D solutions and applications
   - 3-D solutions and applications

4. Non-Fickian Contaminant Transport and Advanced Transport Theories
   - Concept of mobile-immobile approach
   - Colloid transport
   - Transport in a single fracture
   - Stochastic method and scale-dependent transport
   - Fractional Advection-Dispersion Equation (FADE)

5. Numerical Solutions of Advection-Dispersion Equation
   - Numerical dispersion and oscillation problems
   - Upstream finite difference method
   - Method of Characteristic (MOC)
   - Advanced methods

6. Laboratory and Field Methods
   - Laboratory column test
   - Field measurement of contaminant transport
   - Monitoring of DNAPL, LNAPL in the field

7. DNAPL, LNAPL, and Multiphase Transport
   - Fundamentals of multiphase flow and transport
   - DNAPL and NAPL transport

8. Transport in the Vadose Zone and Gas Transport
   - Transport in the vadose zone
   - Gas transport problem

9. Other Topics
   - Remediation technology
   - Stream-aquifer interaction and stream depletion
   - CO₂ sequestration

References:


All students should pay attention to the following:

**THE AMERICANS WITH DISABILITIES ACT (ADA):** If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities in Room B118 of Cain Hall. The phone number is 845-1637.

**AGGIE HONOR CODE:**
http://www.tamu.edu/aggiehonor/

**COPYRIGHT AND PLAGIARISM POLICY:**
Please see http://library.tamu.edu/aggiehonor.